HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

GRITv2: Efficient and Light-weight Social Relation Recognition

N K Sagar Reddy; Neeraj Kasera; Avinash Thakur

GRITv2: Efficient and Light-weight Social Relation Recognition

Abstract

Our research focuses on the analysis and improvement of the Graph-based Relation Inference Transformer (GRIT), which serves as an important benchmark in the field. We conduct a comprehensive ablation study using the PISC-fine dataset, to find and explore improvement in efficiency and performance of GRITv2. Our research has provided a new state-of-the-art relation recognition model on the PISC relation dataset. We introduce several features in the GRIT model and analyse our new benchmarks in two versions: GRITv2-L (large) and GRITv2-S (small). Our proposed GRITv2-L surpasses existing methods on relation recognition and the GRITv2-S is within 2% performance gap of GRITv2-L, which has only 0.0625x the model size and parameters of GRITv2-L. Furthermore, we also address the need for model compression, an area crucial for deploying efficient models on resource-constrained platforms. By applying quantization techniques, we efficiently reduced the GRITv2-S size to 22MB and deployed it on the flagship OnePlus 12 mobile which still surpasses the PISC-fine benchmarks in performance, highlighting the practical viability and improved efficiency of our model on mobile devices.

Benchmarks

BenchmarkMethodologyMetrics
visual-social-relationship-recognition-onGRITv2-L
mAP: 80.7
mAP (Coarse): 87.8

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
GRITv2: Efficient and Light-weight Social Relation Recognition | Papers | HyperAI