HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining

Di Wang; Jing Zhang; Minqiang Xu; Lin Liu; Dongsheng Wang; Erzhong Gao; Chengxi Han; Haonan Guo; Bo Du; Dacheng Tao; Liangpei Zhang

MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining

Abstract

Foundation models have reshaped the landscape of Remote Sensing (RS) by enhancing various image interpretation tasks. Pretraining is an active research topic, encompassing supervised and self-supervised learning methods to initialize model weights effectively. However, transferring the pretrained models to downstream tasks may encounter task discrepancy due to their formulation of pretraining as image classification or object discrimination tasks. In this study, we explore the Multi-Task Pretraining (MTP) paradigm for RS foundation models to address this issue. Using a shared encoder and task-specific decoder architecture, we conduct multi-task supervised pretraining on the SAMRS dataset, encompassing semantic segmentation, instance segmentation, and rotated object detection. MTP supports both convolutional neural networks and vision transformer foundation models with over 300 million parameters. The pretrained models are finetuned on various RS downstream tasks, such as scene classification, horizontal and rotated object detection, semantic segmentation, and change detection. Extensive experiments across 14 datasets demonstrate the superiority of our models over existing ones of similar size and their competitive performance compared to larger state-of-the-art models, thus validating the effectiveness of MTP.

Code Repositories

vitae-transformer/mtp
Official
pytorch
Mentioned in GitHub
cuzyoung/crossearth
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
building-change-detection-for-remote-sensingMAE+MTP(ViT-L+RVSA)
F1: 92.67
Params(M): 305
building-change-detection-for-remote-sensingMAE+MTP(ViT-B+RVSA)
F1: 92.22
Params(M): 86
building-change-detection-for-remote-sensingIMP+MTP(InternImage-XL)
F1: 92.54
Params(M): 335
change-detection-for-remote-sensing-images-onMAE+MTP(ViT-L+RVSA)
F1-Score: 0.9798
change-detection-for-remote-sensing-images-onMAE+MTP(ViT-B+RVSA)
F1-Score: 0.9787
change-detection-for-remote-sensing-images-onIMP+MTP(InternImage-XL)
F1-Score: 0.9833
change-detection-on-cdd-dataset-season-1MAE+MTP(ViT-B+RVSA)
F1-Score: 97.87
change-detection-on-cdd-dataset-season-1MAE+MTP(ViT-L+RVSA)
F1-Score: 97.98
change-detection-on-cdd-dataset-season-1IMP+MTP(InternImage-XL)
F1-Score: 98.33
change-detection-on-levir-cdMAE+MTP(ViT-L+RVSA)
F1: 92.67
change-detection-on-levir-cdIMP+MTP(InternImage-XL)
F1: 92.54
change-detection-on-levir-cdMAE+MTP(ViT-B+RVSA)
F1: 92.22
change-detection-on-oscd-3chMAE+MTP(ViT-B+RVSA)
F1: 53.36
change-detection-on-oscd-3chMAE+MTP(ViT-L+RVSA)
F1: 55.92
change-detection-on-oscd-3chIMP+MTP(InternImage-XL)
F1: 55.61
change-detection-on-whu-building-datasetMAE+MTP(ViT-L+RVSA)
F1-score: 0.9475
change-detection-on-whu-building-datasetMAE+MTP(ViT-B+RVSA)
F1-score: 0.9432
change-detection-on-whu-building-datasetIMP+MTP(InternImage-XL)
F1-score: 0.9559
image-classification-on-eurosatIMP+MTP(IntenImage-XL)
Accuracy (%): 99.24
image-classification-on-eurosatMAE+MTP(ViT-L+RVSA)
Accuracy (%): 98.78
image-classification-on-eurosatMAE+MTP(ViT-B+RVSA)
Accuracy (%): 98.76
object-detection-in-aerial-images-on-diorMAE+MTP(ViT-L+RVSA)
AP50: 81.1
object-detection-in-aerial-images-on-diorIMP+MTP(InternImage-XL)
AP50: 78.0
object-detection-in-aerial-images-on-diorMAE+MTP(ViT-B+RVSA)
AP50: 79.4
object-detection-in-aerial-images-on-dior-rMAE+MTP(ViT-L+RVSA)
mAP: 74.54
object-detection-in-aerial-images-on-dior-rMAE+MTP(ViT-B+RVSA)
mAP: 71.29
object-detection-in-aerial-images-on-dior-rIMP+MTP(InternImage-XL)
mAP: 72.17
object-detection-in-aerial-images-on-dota-1IMP+MTP(InternImage-XL)
mAP: 80.77%
object-detection-in-aerial-images-on-dota-1MAE+MTP(ViT-B+RVSA)
mAP: 80.67%
object-detection-in-aerial-images-on-dota-1MAE+MTP(ViT-L+RVSA)
mAP: 81.66%
object-detection-in-aerial-images-on-fair1m-2IMP+MTP(InternImage-XL)
mAP: 50.93
object-detection-in-aerial-images-on-fair1m-2MAE+MTP(ViT-B+RVSA)
mAP: 51.92
object-detection-in-aerial-images-on-fair1m-2MAE+MTP(ViT-L+RVSA)
mAP: 53.00
object-detection-in-aerial-images-on-xviewIMP+MTP(InternImage-XL)
AP50: 18.2
object-detection-in-aerial-images-on-xviewMAE+MTP(ViT-L+RVSA)
AP50: 19.4
object-detection-in-aerial-images-on-xviewMAE+MTP(ViT-B+RVSA)
AP50: 16.4
semantic-segmentation-on-lovedaMAE+MTP(ViT-L+RVSA)
Category mIoU: 54.17
semantic-segmentation-on-lovedaIMP+MTP(InternImage-XL)
Category mIoU: 54.17
semantic-segmentation-on-lovedaMAE+MTP(ViT-B+RVSA)
Category mIoU: 52.39
semantic-segmentation-on-spacenet-1MAE+MTP(ViT-L+RVSA)
Mean IoU: 79.54
semantic-segmentation-on-spacenet-1MAE+MTP(ViT-L)
Mean IoU: 79.69
semantic-segmentation-on-spacenet-1IMP+MTP(InternImage-XL)
Mean IoU: 79.16
semantic-segmentation-on-spacenet-1MAE+MTP(ViT-B+RVSA)
Mean IoU: 79.63

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining | Papers | HyperAI