HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

ScaleDepth: Decomposing Metric Depth Estimation into Scale Prediction and Relative Depth Estimation

Ruijie Zhu Chuxin Wang Ziyang Song Li Liu Tianzhu Zhang Yongdong Zhang

ScaleDepth: Decomposing Metric Depth Estimation into Scale Prediction and Relative Depth Estimation

Abstract

Estimating depth from a single image is a challenging visual task. Compared to relative depth estimation, metric depth estimation attracts more attention due to its practical physical significance and critical applications in real-life scenarios. However, existing metric depth estimation methods are typically trained on specific datasets with similar scenes, facing challenges in generalizing across scenes with significant scale variations. To address this challenge, we propose a novel monocular depth estimation method called ScaleDepth. Our method decomposes metric depth into scene scale and relative depth, and predicts them through a semantic-aware scale prediction (SASP) module and an adaptive relative depth estimation (ARDE) module, respectively. The proposed ScaleDepth enjoys several merits. First, the SASP module can implicitly combine structural and semantic features of the images to predict precise scene scales. Second, the ARDE module can adaptively estimate the relative depth distribution of each image within a normalized depth space. Third, our method achieves metric depth estimation for both indoor and outdoor scenes in a unified framework, without the need for setting the depth range or fine-tuning model. Extensive experiments demonstrate that our method attains state-of-the-art performance across indoor, outdoor, unconstrained, and unseen scenes. Project page: https://ruijiezhu94.github.io/ScaleDepth

Benchmarks

BenchmarkMethodologyMetrics
monocular-depth-estimation-on-ddadScaleDepth-NK
Delta u003c 1.25: 0.871
RMSE: 6.097
absolute relative error: 0.121
monocular-depth-estimation-on-diml-outdoorScaleDepth-NK
Delta u003c 1.25: 0.058
RMSE: 4.344
absolute relative error: 1.007
monocular-depth-estimation-on-diode-indoorScaleDepth-NK
Delta u003c 1.25: 0.447
RMSE: 1.443
absolute relative error: 0.355
monocular-depth-estimation-on-diode-outdoorScaleDepth-NK
Delta u003c 1.25: 0.262
RMSE: 8.632
absolute relative error: 0.562
monocular-depth-estimation-on-hypersimScaleDepth-NK
Delta u003c 1.25: 0.413
RMSE: 4.825
absolute relative error: 0.381
monocular-depth-estimation-on-ibims-1ScaleDepth-NK
RMSE: 0.59
absolute relative error: 0.164
δ1.25: 0.778
monocular-depth-estimation-on-kitti-eigenScaleDepth-K
Delta u003c 1.25: 0.98
Delta u003c 1.25^2: 0.998
Delta u003c 1.25^3: 1.000
RMSE: 1.987
RMSE log: 0.073
Sq Rel: 0.136
absolute relative error: 0.048
monocular-depth-estimation-on-nyu-depth-v2ScaleDepth-N
Delta u003c 1.25: 0.957
Delta u003c 1.25^2: 0.994
Delta u003c 1.25^3: 0.999
RMSE: 0.267
absolute relative error: 0.074
log 10: 0.032
monocular-depth-estimation-on-sun-rgbdScaleDepth-NK
Delta u003c 1.25: 0.866
RMSE: 0.359
absolute relative error: 0.129
monocular-depth-estimation-on-virtual-kitti-2ScaleDepth-NK
Delta u003c 1.25: 0.834
RMSE: 4.747
absolute relative error: 0.12

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
ScaleDepth: Decomposing Metric Depth Estimation into Scale Prediction and Relative Depth Estimation | Papers | HyperAI