HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

Ducho meets Elliot: Large-scale Benchmarks for Multimodal Recommendation

Matteo Attimonelli; Danilo Danese; Angela Di Fazio; Daniele Malitesta; Claudio Pomo; Tommaso Di Noia

Ducho meets Elliot: Large-scale Benchmarks for Multimodal Recommendation

Abstract

In specific domains like fashion, music, and movie recommendation, the multi-faceted features characterizing products and services may influence each customer on online selling platforms differently, paving the way to novel multimodal recommendation models that can learn from such multimodal content. According to the literature, the common multimodal recommendation pipeline involves (i) extracting multimodal features, (ii) refining their high-level representations to suit the recommendation task, (iii) optionally fusing all multimodal features, and (iv) predicting the user-item score. While great effort has been put into designing optimal solutions for (ii-iv), to the best of our knowledge, very little attention has been devoted to exploring procedures for (i). In this respect, the existing literature outlines the large availability of multimodal datasets and the ever-growing number of large models accounting for multimodal-aware tasks, but (at the same time) an unjustified adoption of limited standardized solutions. This motivates us to explore more extensive techniques for the (i) stage of the pipeline. To this end, this paper settles as the first attempt to offer a large-scale benchmarking for multimodal recommender systems, with a specific focus on multimodal extractors. Specifically, we take advantage of two popular and recent frameworks for multimodal feature extraction and reproducibility in recommendation, Ducho and Elliot, to offer a unified and ready-to-use experimental environment able to run extensive benchmarking analyses leveraging novel multimodal feature extractors. Results, largely validated under different hyper-parameter settings for the chosen extractors, provide important insights on how to train and tune the next generation of multimodal recommendation algorithms.

Code Repositories

Benchmarks

BenchmarkMethodologyMetrics
multimodal-recommendation-on-amazon-babyVBPR (ResNet50 + Sentence Bert)
Hit Ratio: 10.18
Recall: 6.21
nDCG: 2.99
multimodal-recommendation-on-amazon-babyFREEDOM (CLIP)
Hit Ratio: 14.45
Recall: 8.95
nDCG: 4.36
multimodal-recommendation-on-amazon-babyItemKNN
Hit Ratio: 4.21
Recall: 2.46
nDCG: 1.19
multimodal-recommendation-on-amazon-babyLATTICE (MMFashion + Sentence Bert)
Hit Ratio: 13.63
Recall: 8.38
nDCG: 4.13
multimodal-recommendation-on-amazon-babyNGCF
Hit Ratio: 8.59
Recall: 5.09
nDCG: 2.39
multimodal-recommendation-on-amazon-babyNGCF-M (ResNet50 + Sentence Bert)
Hit Ratio: 11.91
Recall: 7.18
nDCG: 3.50
multimodal-recommendation-on-amazon-babyBPRMF
Hit Ratio: 9.04
Recall: 5.48
nDCG: 2.67
multimodal-recommendation-on-amazon-babyNGCF-M (Align)
Hit Ratio: 12.61
Recall: 7.70
nDCG: 3.66
multimodal-recommendation-on-amazon-babyVBPR (MMFashion + Sentence Bert)
Hit Ratio: 10.39
Recall: 6.42
nDCG: 3.12
multimodal-recommendation-on-amazon-babyLATTICE (ResNet50 + Sentence Bert)
Hit Ratio: 13.69
Recall: 8.41
nDCG: 4.06
multimodal-recommendation-on-amazon-babyBM3 (ResNet50 + Sentence Bert)
Hit Ratio: 13.29
Recall: 8.05
nDCG: 3.91
multimodal-recommendation-on-amazon-babyGRCN (Align)
Hit Ratio: 8.76
Recall: 5.21
nDCG: 2.43
multimodal-recommendation-on-amazon-babyGRCN (ResNet50 + Sentence Bert)
Hit Ratio: 8.81
Recall: 5.29
nDCG: 2.48
multimodal-recommendation-on-amazon-babyDGCF
Hit Ratio: 10.26
Recall: 6.08
nDCG: 3.03
multimodal-recommendation-on-amazon-babySGL
Hit Ratio: 9.40
Recall: 5.77
nDCG: 2.93
multimodal-recommendation-on-amazon-babyFREEDOM (ResNet50 + Sentence Bert)
Hit Ratio: 14.28
Recall: 8.81
nDCG: 4.31
multimodal-recommendation-on-amazon-babyLightGCN
Hit Ratio: 12.60
Recall: 7.56
nDCG: 3.82
multimodal-recommendation-on-amazon-babyBM3 (AltCLIP)
Hit Ratio: 13.53
Recall: 8.15
nDCG: 4.10
multimodal-recommendation-on-amazon-beautyFREEDOM (ResNet50 + Sentence Bert)
Hit Ratio: 21.11
Recall: 13.85
nDCG: 7.24
multimodal-recommendation-on-amazon-beautyNGCF-M (MMFashion + Sentecen Bert)
Hit Ratio: 18.22
Recall: 11.93
nDCG: 6.21
multimodal-recommendation-on-amazon-beautySGL
Hit Ratio: 18.17
Recall: 11.82
nDCG: 6.50
multimodal-recommendation-on-amazon-beautyItemKNN
Hit Ratio: 10.89
Recall: 6.97
nDCG: 3.85
multimodal-recommendation-on-amazon-beautyLightGCN
Hit Ratio: 19.03
Recall: 12.30
nDCG: 6.42
multimodal-recommendation-on-amazon-beautyVBPR (AltCLIP)
Hit Ratio: 18.19
Recall: 11.94
nDCG: 6.15
multimodal-recommendation-on-amazon-beautyGRCN (ALIGN)
Hit Ratio: 16.09
Recall: 10.26
nDCG: 5.15
multimodal-recommendation-on-amazon-beautyVBPR (ResNet50 + Sentence Bert)
Hit Ratio: 17.64
Recall: 11.54
nDCG: 6.08
multimodal-recommendation-on-amazon-beautyBM3 (ALIGN)
Hit Ratio: 18.04
Recall: 11.67
nDCG: 6.04
multimodal-recommendation-on-amazon-beautyNGCF
Hit Ratio: 16.21
Recall: 10.42
nDCG: 5.27
multimodal-recommendation-on-amazon-beautyGRCN (ResNet50 + Sentence Bert)
Hit Ratio: 14.89
Recall: 9.57
nDCG: 4.83
multimodal-recommendation-on-amazon-beautyNGCF-M (ResNet50 + Sentence Bert)
Hit Ratio: 18.12
Recall: 11.72
nDCG: 6.11
multimodal-recommendation-on-amazon-beautyDGCF
Hit Ratio: 16.21
Recall: 10.42
nDCG: 5.27
multimodal-recommendation-on-amazon-beautyLATTICE (ALIGN)
Hit Ratio: 21.31
Recall: 13.93
nDCG: 7.21
multimodal-recommendation-on-amazon-beautyBM3 (ResNet50 + Sentence Bert)
Hit Ratio: 17.65
Recall: 11.28
nDCG: 5.83
multimodal-recommendation-on-amazon-beautyBPRMF
Hit Ratio: 16.55
Recall: 10.72
nDCG: 5.36
multimodal-recommendation-on-amazon-beautyLATTICE (ResNet50 + Sentence Bert)
Hit Ratio: 20.65
Recall: 13.44
nDCG: 7.03
multimodal-recommendation-on-amazon-beautyFREEDOM (MMFashion + Sentecen Bert)
Hit Ratio: 21.18
Recall: 13.87
nDCG: 7.17
multimodal-recommendation-on-amazon-digitalVBPR (ResNet50 + Sentence Bert)
Hit Ratio: 43.54
Recall: 28.37
nDCG: 15.22
multimodal-recommendation-on-amazon-digitalFREEDOM (ResNet50 + Sentence Bert)
Hit Ratio: 43.46
Recall: 29.05
nDCG: 16.15
multimodal-recommendation-on-amazon-digitalItemKNN
Hit Ratio: 34.51
Recall: 21.74
nDCG: 12.00
multimodal-recommendation-on-amazon-digitalGRCN (ResNet50 + Sentence Bert)
Hit Ratio: 36.25
Recall: 22.88
nDCG: 12.17
multimodal-recommendation-on-amazon-digitalSGL
Hit Ratio: 40.81
Recall: 27.09
nDCG: 15.03
multimodal-recommendation-on-amazon-digitalDGCF
Hit Ratio: 40.46
Recall: 26.47
nDCG: 14.46
multimodal-recommendation-on-amazon-digitalNGCF
Hit Ratio: 40.14
Recall: 26.46
nDCG: 14.58
multimodal-recommendation-on-amazon-digitalLightGCN
Hit Ratio: 43.19
Recall: 28.66
nDCG: 14.95
multimodal-recommendation-on-amazon-digitalLATTICE (ResNet50 + Sentence Bert)
Hit Ratio: 43.60
Recall: 29.40
nDCG: 16.07
multimodal-recommendation-on-amazon-digitalBRMF
Hit Ratio: 41.13
Recall: 27.32
nDCG: 14.94
multimodal-recommendation-on-amazon-digitalNGCF-M (ResNet50 + Sentence Bert)
Hit Ratio: 41.91
Recall: 27.84
nDCG: 15.35
multimodal-recommendation-on-amazon-digitalBM3 (ResNet50 + Sentence Bert)
Hit Ratio: 41.42
Recall: 27.07
nDCG: 14.34
multimodal-recommendation-on-amazon-officeNGCF
Hit Ratio: 19.62
Recall: 11.05
nDCG: 5.45
multimodal-recommendation-on-amazon-officeDGCF
Hit Ratio: 20.89
Recall: 12.19
nDCG: 5.89
multimodal-recommendation-on-amazon-officeLightGCN
Hit Ratio: 23.95
Recall: 13.99
nDCG: 6.93
multimodal-recommendation-on-amazon-officeVBPR (CLIP)
Hit Ratio: 22.10
Recall: 12.78
nDCG: 6.23
multimodal-recommendation-on-amazon-officeNGCF-M (ResNet50+ Sentence Bert)
Hit Ratio: 24.04
Recall: 14.35
nDCG: 7.14
multimodal-recommendation-on-amazon-officeItemKNN
Hit Ratio: 20.33
Recall: 11.35
nDCG: 5.76
multimodal-recommendation-on-amazon-officeBPRMF
Hit Ratio: 19.70
Recall: 11.28
nDCG: 5.35
multimodal-recommendation-on-amazon-officeLATTICE (ResNet50+ Sentence Bert)
Hit Ratio: 25.79
Recall: 15.75
nDCG: 7.71
multimodal-recommendation-on-amazon-officeSGL
Hit Ratio: 20.49
Recall: 11.85
nDCG: 5.89
multimodal-recommendation-on-amazon-officeLATTICE (ALIGN)
Hit Ratio: 25.65
Recall: 15.71
nDCG: 7.63
multimodal-recommendation-on-amazon-officeBM3 (ResNet50+ Sentence Bert)
Hit Ratio: 22.5
Recall: 13.13
nDCG: 6.42
multimodal-recommendation-on-amazon-officeVBPR (ResNet50+ Sentence Bert)
Hit Ratio: 22.01
Recall: 12.83
nDCG: 6.18
multimodal-recommendation-on-amazon-officeFREEDOM (CLIP)
Hit Ratio: 25.88
Recall: 15.64
nDCG: 7.66
multimodal-recommendation-on-amazon-officeFREEDOM (ResNet50+ Sentence Bert)
Hit Ratio: 23.59
Recall: 15.58
nDCG: 7.57
multimodal-recommendation-on-amazon-officeGRCN (CLIP)
Hit Ratio: 22.32
Recall: 13.10
nDCG: 6.47
multimodal-recommendation-on-amazon-officeNGCF-M (CLIP)
Hit Ratio: 24.85
Recall: 14.99
nDCG: 7.43
multimodal-recommendation-on-amazon-officeBM3 (ALIGN)
Hit Ratio: 23.40
Recall: 13.84
nDCG: 6.75
multimodal-recommendation-on-amazon-officeGRCN (ResNet50+ Sentence Bert)
Hit Ratio: 21.20
Recall: 12.31
nDCG: 6.08
multimodal-recommendation-on-amazon-toysSGL
Hit Ratio: 16.68
Recall: 10.76
nDCG: 5.93
multimodal-recommendation-on-amazon-toysFREEDOM (MMFashion + Sentence Bert)
Hit Ratio: 20.70
Recall: 13.73
nDCG: 7.10
multimodal-recommendation-on-amazon-toysVBPR (ALIGN)
Hit Ratio: 16.86
Recall: 11.06
nDCG: 5.85
multimodal-recommendation-on-amazon-toysGRCN (ALIGN)
Hit Ratio: 15.35
Recall: 9.94
nDCG: 5.07
multimodal-recommendation-on-amazon-toysFREEDOM (ResNet50 + Sentence Bert)
Hit Ratio: 20.64
Recall: 13.67
nDCG: 7.04
multimodal-recommendation-on-amazon-toysDGCF
Hit Ratio: 14.71
Recall: 9.43
nDCG: 5.12
multimodal-recommendation-on-amazon-toysLightGCN
Hit Ratio: 16.63
Recall: 10.59
nDCG: 5.58
multimodal-recommendation-on-amazon-toysGRCN (ResNet50 + Sentence Bert)
Hit Ratio: 15.00
Recall: 9.67
nDCG: 9.675.07
multimodal-recommendation-on-amazon-toysNGCF-M (ResNet50 + Sentence Bert)
Hit Ratio: 16.73
Recall: 10.85
nDCG: 5.73
multimodal-recommendation-on-amazon-toysBPRMF
Hit Ratio: 14.75
Recall: 9.51
nDCG: 5.02
multimodal-recommendation-on-amazon-toysBM3 (ALIGN)
Hit Ratio: 15.78
Recall: 10.07
nDCG: 5.24
multimodal-recommendation-on-amazon-toysVBPR (ResNet50 + Sentence Bert)
Hit Ratio: 16.54
Recall: 10.83
nDCG: 5.70
multimodal-recommendation-on-amazon-toysLATTICE (ResNet50 + Sentence Bert)
Hit Ratio: 18.95
Recall: 12.42
nDCG: 6.45
multimodal-recommendation-on-amazon-toysNGCF-M (ALIGN)
Hit Ratio: 17.16
Recall: 11.12
nDCG: 5.80
multimodal-recommendation-on-amazon-toysLATTICE (ALIGN)
Hit Ratio: 19.27
Recall: 12.73
nDCG: 6.64
multimodal-recommendation-on-amazon-toysNGCF
Hit Ratio: 14.44
Recall: 9.24
nDCG: 4.87
multimodal-recommendation-on-amazon-toysItemKNN
Hit Ratio: 11.06
Recall: 6.97
nDCG: 3.91
multimodal-recommendation-on-amazon-toysBM3 (ResNet50 + Sentence Bert)
Hit Ratio: 15.56
Recall: 9.94
nDCG: 5.14

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Ducho meets Elliot: Large-scale Benchmarks for Multimodal Recommendation | Papers | HyperAI