HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Hierarchical Information Flow for Generalized Efficient Image Restoration

Li Yawei ; Ren Bin ; Liang Jingyun ; Ranjan Rakesh ; Liu Mengyuan ; Sebe Nicu ; Yang Ming-Hsuan ; Benini Luca

Hierarchical Information Flow for Generalized Efficient Image
  Restoration

Abstract

While vision transformers show promise in numerous image restoration (IR)tasks, the challenge remains in efficiently generalizing and scaling up a modelfor multiple IR tasks. To strike a balance between efficiency and modelcapacity for a generalized transformer-based IR method, we propose ahierarchical information flow mechanism for image restoration, dubbed Hi-IR,which progressively propagates information among pixels in a bottom-up manner.Hi-IR constructs a hierarchical information tree representing the degradedimage across three levels. Each level encapsulates different types ofinformation, with higher levels encompassing broader objects and concepts andlower levels focusing on local details. Moreover, the hierarchical treearchitecture removes long-range self-attention, improves the computationalefficiency and memory utilization, thus preparing it for effective modelscaling. Based on that, we explore model scaling to improve our method'scapabilities, which is expected to positively impact IR in large-scale trainingsettings. Extensive experimental results show that Hi-IR achievesstate-of-the-art performance in seven common image restoration tasks, affirmingits effectiveness and generalizability.

Benchmarks

BenchmarkMethodologyMetrics
color-image-denoising-on-kodak24-sigma15Hi-IR
PSNR: 35.42
color-image-denoising-on-kodak24-sigma25Hi-IR
PSNR: 33.01
color-image-denoising-on-kodak24-sigma50Hi-IR
PSNR: 29.98
color-image-denoising-on-mcmaster-sigma15Hi-IR
PSNR: 35.69
color-image-denoising-on-mcmaster-sigma25Hi-IR
PSNR: 33.44
color-image-denoising-on-mcmaster-sigma50Hi-IR
PSNR: 30.42
color-image-denoising-on-urban100-sigma15-1Hi-IR
PSNR: 35.46
color-image-denoising-on-urban100-sigma25Hi-IR
PSNR: 33.34
color-image-denoising-on-urban100-sigma50Hi-IR
PSNR: 30.59
grayscale-image-denoising-on-set12-sigma15Hi-IR
PSNR: 33.48
grayscale-image-denoising-on-set12-sigma25Hi-IR
PSNR: 31.19
grayscale-image-denoising-on-set12-sigma50Hi-IR
PSNR: 28.15
grayscale-image-denoising-on-urban100-sigma15-1Hi-IR
PSNR: 34.11
grayscale-image-denoising-on-urban100-sigma25Hi-IR
PSNR: 31.92
grayscale-image-denoising-on-urban100-sigma50Hi-IR
PSNR: 28.91
image-deblurring-on-goproHi-IR-L
PSNR: 33.99
image-deblurring-on-hide-trained-on-goproHi-IR-L
PSNR: 31.64
image-super-resolution-on-bsd100-2x-upscalingHi-IR-L
PSNR: 32.77
SSIM: 0.9092
image-super-resolution-on-bsd100-3x-upscalingHi-IR-L
PSNR: 29.67
SSIM: 0.8256
image-super-resolution-on-bsd100-4x-upscalingHi-IR-L
PSNR: 28.13
SSIM: 0.7622
image-super-resolution-on-manga109-2xHi-IR-L
PSNR: 41.22
SSIM: 0.9846
image-super-resolution-on-manga109-3xHi-IR-L
PSNR: 36.12
SSIM: 0.9588
image-super-resolution-on-manga109-4xHi-IR-L
PSNR: 33.13
SSIM: 0.9366
image-super-resolution-on-set14-2x-upscalingHi-IR-L
PSNR: 35.27
SSIM: 0.9311
image-super-resolution-on-set14-3x-upscalingHi-IR-L
PSNR: 31.55
SSIM: 0.8616
image-super-resolution-on-set14-4x-upscalingHi-IR-L
PSNR: 29.49
SSIM: 0.8041
image-super-resolution-on-set5-2x-upscalingHi-IR-L
PSNR: 38.87
SSIM: 0.9663
image-super-resolution-on-set5-3x-upscalingHi-IR-L
PSNR: 35.2
SSIM: 0.938
image-super-resolution-on-set5-4x-upscalingHi-IR-L
PSNR: 33.22
SSIM: 0.9103
image-super-resolution-on-urban100-2xHi-IR-L
PSNR: 35.16
SSIM: 0.9505
image-super-resolution-on-urban100-3xHi-IR-L
PSNR: 31.07
SSIM: 0.902
image-super-resolution-on-urban100-4xHi-IR-L
PSNR: 28.72
SSIM: 0.8514
jpeg-artifact-correction-on-bsd500-quality-10Hi-IR
PSNR: 28.35
SSIM: 0.8092
jpeg-artifact-correction-on-bsd500-quality-20Hi-IR
PSNR: 30.61
SSIM: 0.874
jpeg-artifact-correction-on-bsd500-quality-30Hi-IR
PSNR: 31.99
SSIM: 0.9035
jpeg-artifact-correction-on-bsd500-quality-40Hi-IR
PSNR: 32.92
SSIM: 0.9195
jpeg-artifact-correction-on-classic5-qualityHi-IR
PSNR: 30.38
SSIM: 0.8266
jpeg-artifact-correction-on-classic5-quality-1Hi-IR
PSNR: 32.62
SSIM: 0.8751
jpeg-artifact-correction-on-classic5-quality-2Hi-IR
PSNR: 33.8
SSIM: 0.8962
jpeg-artifact-correction-on-classic5-quality-3Hi-IR
PSNR: 34.61
SSIM: 0.9082
jpeg-artifact-correction-on-live1-quality-10Hi-IR
PSNR: 28.36
SSIM: 0.818
jpeg-artifact-correction-on-live1-quality-10-1Hi-IR
PSNR: 29.94
SSIM: 0.8359
jpeg-artifact-correction-on-live1-quality-20Hi-IR
PSNR: 30.66
SSIM: 0.8797
jpeg-artifact-correction-on-live1-quality-20-1Hi-IR
PSNR: 32.31
SSIM: 0.8938
jpeg-artifact-correction-on-live1-quality-30Hi-IR
PSNR: 32.02
SSIM: 0.9063
jpeg-artifact-correction-on-live1-quality-30-1Hi-IR
PSNR: 33.73
SSIM: 0.9223
jpeg-artifact-correction-on-live1-quality-40Hi-IR
PSNR: 34.71
SSIM: 0.9347
jpeg-artifact-correction-on-live1-quality-40-1Hi-IR
PSNR: 32.94
SSIM: 0.921
jpeg-artifact-correction-on-urban100-qualityHi-IR
PSNR: 31.07
SSIM: 0.895
jpeg-artifact-correction-on-urban100-quality-1Hi-IR
PSNR: 33.51
SSIM: 0.925
jpeg-artifact-correction-on-urban100-quality-2Hi-IR
PSNR: 34.86
SSIM: 0.9459
jpeg-artifact-correction-on-urban100-quality-3Hi-IR
PSNR: 35.77
SSIM: 0.9561
jpeg-artifact-correction-on-urban100-quality-4Hi-IR
PSNR: 29.11
SSIM: 0.8727
jpeg-artifact-correction-on-urban100-quality-5Hi-IR
PSNR: 31.36
SSIM: 0.9115
jpeg-artifact-correction-on-urban100-quality-6Hi-IR
PSNR: 32.57
SSIM: 0.9279
jpeg-artifact-correction-on-urban100-quality-7Hi-IR
PSNR: 33.37
SSIM: 0.9373

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Hierarchical Information Flow for Generalized Efficient Image Restoration | Papers | HyperAI