HyperAIHyperAI

Command Palette

Search for a command to run...

Molecular Fingerprints Are Strong Models for Peptide Function Prediction

Jakub Adamczyk Piotr Ludynia Wojciech Czech

Abstract

We study the effectiveness of molecular fingerprints for peptide property prediction and demonstrate that domain-specific feature extraction from molecular graphs can outperform complex and computationally expensive models such as GNNs, pretrained sequence-based transformers and multimodal ensembles, even without hyperparameter tuning. To this end, we perform a thorough evaluation on 126 datasets, achieving state-of-the-art results on LRGB and 5 other peptide function prediction benchmarks. We show that models based on count variants of ECFP, Topological Torsion, and RDKit molecular fingerprints and LightGBM as classification head are remarkably robust. The strong performance of molecular fingerprints, which are intrinsically very short-range feature encoders, challenges the presumed importance of long-range interactions in peptides. Our conclusion is that the use of molecular fingerprints for larger molecules, such as peptides, can be a computationally feasible, low-parameter, and versatile alternative to sophisticated deep learning models.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Molecular Fingerprints Are Strong Models for Peptide Function Prediction | Papers | HyperAI