HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

PLAME: Leveraging Pretrained Language Models to Generate Enhanced Protein Multiple Sequence Alignments

Hanqun Cao Xinyi Zhou Zijun Gao Chenyu Wang Xin Gao Zhi Zhang et al

PLAME: Leveraging Pretrained Language Models to Generate Enhanced Protein Multiple Sequence Alignments

Abstract

Protein structure prediction is essential for drug discovery and understanding biological functions. While recent advancements like AlphaFold have achieved remarkable accuracy, most folding models rely heavily on multiple sequence alignments (MSAs) to boost prediction performance. This dependency limits their effectiveness on low-homology proteins and orphan proteins, where MSA information is sparse or unavailable. To address this limitation, we propose PLAME, a novel MSA design model that leverages evolutionary embeddings from pretrained protein language models. Unlike existing methods, PLAME introduces pretrained representations to enhance evolutionary information and employs a conservation-diversity loss to enhance generation quality. Additionally, we propose a novel MSA selection method to effectively screen high-quality MSAs and improve folding performance. We also propose a sequence quality assessment metric that provides an orthogonal perspective to evaluate MSA quality. On the AlphaFold2 benchmark of low-homology and orphan proteins, PLAME achieves state-of-the-art performance in folding enhancement and sequence quality assessment, with consistent improvements demonstrated on AlphaFold3. Ablation studies validate the effectiveness of the MSA selection method, while extensive case studies on various protein types provide insights into the relationship between AlphaFold's prediction quality and MSA characteristics. Furthermore, we demonstrate that PLAME can serve as an adapter achieving AlphaFold2-level accuracy with the ESMFold's inference speed.

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
PLAME: Leveraging Pretrained Language Models to Generate Enhanced Protein Multiple Sequence Alignments | Papers | HyperAI