HyperAIHyperAI

Command Palette

Search for a command to run...

13 days ago

FLOWER: Democratizing Generalist Robot Policies with Efficient Vision-Language-Action Flow Policies

Moritz Reuss Hongyi Zhou Marcel Rühle Ömer Erdinç Yağmurlu Fabian Otto Rudolf Lioutikov

FLOWER: Democratizing Generalist Robot Policies with Efficient Vision-Language-Action Flow Policies

Abstract

Developing efficient Vision-Language-Action (VLA) policies is crucial for practical robotics deployment, yet current approaches face prohibitive computational costs and resource requirements. Existing diffusion-based VLA policies require multi-billion-parameter models and massive datasets to achieve strong performance. We tackle this efficiency challenge with two contributions: intermediate-modality fusion, which reallocates capacity to the diffusion head by pruning up to $50\%$ of LLM layers, and action-specific Global-AdaLN conditioning, which cuts parameters by $20\%$ through modular adaptation. We integrate these advances into a novel 950 M-parameter VLA called FLOWER. Pretrained in just 200 H100 GPU hours, FLOWER delivers competitive performance with bigger VLAs across $190$ tasks spanning ten simulation and real-world benchmarks and demonstrates robustness across diverse robotic embodiments. In addition, FLOWER achieves a new SoTA of 4.53 on the CALVIN ABC benchmark. Demos, code and pretrained weights are available at https://intuitive-robots.github.io/flower_vla/.

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
FLOWER: Democratizing Generalist Robot Policies with Efficient Vision-Language-Action Flow Policies | Papers | HyperAI