HyperAIHyperAI

Command Palette

Search for a command to run...

14 days ago

Self-Attention to Operator Learning-based 3D-IC Thermal Simulation

Zhen Huang Hong Wang Wenkai Yang Muxi Tang et al

Self-Attention to Operator Learning-based 3D-IC Thermal Simulation

Abstract

Thermal management in 3D ICs is increasingly challenging due to higher power densities. Traditional PDE-solving-based methods, while accurate, are too slow for iterative design. Machine learning approaches like FNO provide faster alternatives but suffer from high-frequency information loss and high-fidelity data dependency. We introduce Self-Attention U-Net Fourier Neural Operator (SAU-FNO), a novel framework combining self-attention and U-Net with FNO to capture long-range dependencies and model local high-frequency features effectively. Transfer learning is employed to fine-tune low-fidelity data, minimizing the need for extensive high-fidelity datasets and speeding up training. Experiments demonstrate that SAU-FNO achieves state-of-the-art thermal prediction accuracy and provides an 842x speedup over traditional FEM methods, making it an efficient tool for advanced 3D IC thermal simulations.

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Self-Attention to Operator Learning-based 3D-IC Thermal Simulation | Papers | HyperAI