HyperAIHyperAI

Command Palette

Search for a command to run...

A Multi-Task Mean Teacher for Semi-Supervised Shadow Detection

Pheng-Ann Heng Wei Feng Song Wang Liang Wan Lei Zhu Zhihao Chen

Abstract

Existing shadow detection methods suffer from an intrinsic limitation in relying on limited labeled datasets, and they may produce poor results in some complicated situations. To boost the shadow detection performance, this paper presents a multi-task mean teacher model for semi-supervised shadow detection by leveraging unlabeled data and exploring the learning of multiple information of shadows simultaneously. To be specific, we first build a multi-task baseline model to simultaneously detect shadow regions, shadow edges, and shadow count by leveraging their complementary information and assign this baseline model to the student and teacher network. After that, we encourage the predictions of the three tasks from the student and teacher networks to be consistent for computing a consistency loss on unlabeled data, which is then added to the supervised loss on the labeled data from the predictions of the multi-task baseline model. Experimental results on three widely-used benchmark datasets show that our method consistently outperforms all the compared state-of- the-art methods, which verifies that the proposed network can effectively leverage additional unlabeled data to boost the shadow detection performance.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
A Multi-Task Mean Teacher for Semi-Supervised Shadow Detection | Papers | HyperAI