HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

BlockGCN: Redefine Topology Awareness for Skeleton-Based Action Recognition

{Xian-Sheng Hua Qi Dai Yan Yan Zhi-Qi Cheng Xudong Yan Yuxuan Zhou}

BlockGCN: Redefine Topology Awareness for Skeleton-Based Action Recognition

Abstract

Graph Convolutional Networks (GCNs) have long set the state-of-the-art in skeleton-based action recognition leveraging their ability to unravel the complex dynamics of human joint topology through the graph's adjacency matrix. However an inherent flaw has come to light in these cutting-edge models: they tend to optimize the adjacency matrix jointly with the model weights. This process while seemingly efficient causes a gradual decay of bone connectivity data resulting in a model indifferent to the very topology it sought to represent. To remedy this we propose a two-fold strategy: (1) We introduce an innovative approach that encodes bone connectivity by harnessing the power of graph distances to describe the physical topology; we further incorporate action-specific topological representation via persistent homology analysis to depict systemic dynamics. This preserves the vital topological nuances often lost in conventional GCNs. (2) Our investigation also reveals the redundancy in existing GCNs for multi-relational modeling which we address by proposing an efficient refinement to Graph Convolutions (GC) - the BlockGC. This significantly reduces parameters while improving performance beyond original GCNs. Our full model BlockGCN establishes new benchmarks in skeleton-based action recognition across all model categories. Its high accuracy and lightweight design most notably on the large-scale NTU RGB+D 120 dataset stand as strong validation of the efficacy of BlockGCN.

Benchmarks

BenchmarkMethodologyMetrics
skeleton-based-action-recognition-on-ntu-rgbdBlockGCN
Accuracy (CS): 93.1
Accuracy (CV): 97.0
skeleton-based-action-recognition-on-ntu-rgbd-1BlockGCN
Accuracy (Cross-Setup): 91.5
Accuracy (Cross-Subject): 90.3
Ensembled Modalities: 4

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
BlockGCN: Redefine Topology Awareness for Skeleton-Based Action Recognition | Papers | HyperAI