HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Can a simple approach identify complex nurse care activity?

{Sadia Sharmin Mohammad Shoyaib Md. Eusha Kadir Pritom Saha Akash Amin Ahsan Ali}

Abstract

For the last two decades, more and more complex methods have been developed to identify human activities using various types of sensors, e.g., data from motion capture, accelerometer, and gyroscopes sensors. To date, most of the researches mainly focus on identifying simple human activities, e.g., walking, eating, and running. However, many of our daily life activities are usually more complex than those. To instigate research in complex activity recognition, the "Nurse Care Activity Recognition Challenge" [1] is initiated where six nurse activities are to be identified based on location, air pressure, motion capture, and accelerometer data. Our team, "IITDU", investigates the use of simple methods for this purpose. We first extract features from the sensor data and use one of the simplest classifiers, namely K-Nearest Neighbors (KNN). Experiment using an ensemble of KNN classifiers demonstrates that it is possible to achieve approximately 87% accuracy on 10-fold cross-validation and 66% accuracy on leave-one-subject-out cross-validation.

Benchmarks

BenchmarkMethodologyMetrics
multimodal-activity-recognition-on-nurse-careKNN
Accuracy: 80.2%

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Can a simple approach identify complex nurse care activity? | Papers | HyperAI