HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

CLUZH at SIGMORPHON 2022 Shared Tasks on Morpheme Segmentation and Inflection Generation

{Peter Makarov Simon Clematide Silvan Wehrli}

CLUZH at SIGMORPHON 2022 Shared Tasks on Morpheme Segmentation and Inflection Generation

Abstract

This paper describes the submissions of the team of the Department of Computational Linguistics, University of Zurich, to the SIGMORPHON 2022 Shared Tasks on Morpheme Segmentation and Inflection Generation. Our submissions use a character-level neural transducer that operates over traditional edit actions. While this model has been found particularly wellsuited for low-resource settings, using it with large data quantities has been difficult. Existing implementations could not fully profit from GPU acceleration and did not efficiently implement mini-batch training, which could be tricky for a transition-based system. For this year’s submission, we have ported the neural transducer to PyTorch and implemented true mini-batch training. This has allowed us to successfully scale the approach to large data quantities and conduct extensive experimentation. We report competitive results for morpheme segmentation (including sharing first place in part 2 of the challenge). We also demonstrate that reducing sentence-level morpheme segmentation to a word-level problem is a simple yet effective strategy. Additionally, we report strong results in inflection generation (the overall best result for large training sets in part 1, the best results in low-resource learning trajectories in part 2). Our code is publicly available.

Benchmarks

BenchmarkMethodologyMetrics
morpheme-segmentaiton-on-unimorph-4-0CLUZH-1
f1 macro avg (subtask 2): 87.68
lev dist (subtask 2): 5.69
morpheme-segmentaiton-on-unimorph-4-0Ensemble of hard-attention transducers (CLUZH)
macro avg (subtask 1): 96.85
morpheme-segmentaiton-on-unimorph-4-0CLUZH-3
f1 macro avg (subtask 2): 88.14
lev dist (subtask 2): 5.58
morpheme-segmentaiton-on-unimorph-4-0CLUZH-2
f1 macro avg (subtask 2): 87.93
lev dist (subtask 2): 5.62

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
CLUZH at SIGMORPHON 2022 Shared Tasks on Morpheme Segmentation and Inflection Generation | Papers | HyperAI