HyperAIHyperAI

Command Palette

Search for a command to run...

Contrast Prior and Fluid Pyramid Integration for RGBD Salient Object Detection

Le Zhang Xuan-Yi Li Ming-Ming Cheng Deng-Ping Fan Yang Cao Jia-Xing Zhao

Abstract

The large availability of depth sensors provides valuable complementary information for salient object detection (SOD) in RGBD images. However, due to the inherent difference between RGB and depth information, extracting features from the depth channel using ImageNet pre-trained backbone models and fusing them with RGB features directly are sub-optimal. In this paper, we utilize contrast prior, which used to be a dominant cue in none deep learning based SOD approaches, into CNNs-based architecture to enhance the depth information. The enhanced depth cues are further integrated with RGB features for SOD, using a novel fluid pyramid integration, which can make better use of multi-scale cross-modal features. Comprehensive experiments on 5 challenging benchmark datasets demonstrate the superiority of the architecture CPFP over 9 state-of-the-art alternative methods.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp