HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Enhancing 6-DoF Object Pose Estimation through Multiple Modality Fusion: A Hybrid CNN Architecture with Cross-Layer and Cross-Modal Integration

{Qiang Zhang Qing Ma Hao Wei Xueying Sun Zihang Wang}

Abstract

Recently, applying the utilization of RGB-D data for robot perception tasks has garnered significant attention in domains like robotics and autonomous driving. However, a prominent challenge in this field lies in the substantial impact of feature robustness on both segmentation and pose estimation tasks. To tackle this challenge, we proposed a pioneering two-stage hybrid Convolutional Neural Network (CNN) architecture, which connects segmentation and pose estimation in tandem. Specifically, we developed Cross-Modal (CM) and Cross-Layer (CL) modules to exploit the complementary information from RGB and depth modalities, as well as the hierarchical features from diverse layers of the network. The CM and CL integration strategy significantly enhanced the segmentation accuracy by effectively capturing spatial and contextual information. Furthermore, we introduced the Convolutional Block Attention Module (CBAM), which dynamically recalibrated the feature maps, enabling the network to focus on informative regions and channels, thereby enhancing the overall performance of the pose estimation task. We conducted extensive experiments on benchmark datasets to evaluate the proposed method and achieved exceptional target pose estimation results, with an average accuracy of 94.5% using the ADD-S AUC metric and 97.6% of ADD-S smaller than 2 cm. These results demonstrate the superior performance of our proposed method.

Benchmarks

BenchmarkMethodologyMetrics
6d-pose-estimation-on-ycb-video-2CMCL6D
ADDS AUC: 95.43
6d-pose-estimation-using-rgbd-on-ycb-videoCMCL6D
Mean ADD: 95.43
Mean ADD-S: 95.43

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Enhancing 6-DoF Object Pose Estimation through Multiple Modality Fusion: A Hybrid CNN Architecture with Cross-Layer and Cross-Modal Integration | Papers | HyperAI