HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery

{Zhuo Zheng Yanfei Zhong Junjue Wang Ailong Ma}

Abstract

The small object semantic segmentation task is aimed at automatically extracting key objects from high-resolution remote sensing (HRS) imagery. Compared with the large-scale coverage areas for remote sensing imagery, the key objects such as cars, ships, etc. in HRS imagery often contain only a few pixels. In this paper, to tackle this problem, the foreground activation (FA) driven small object semantic segmentation (FactSeg) framework is proposed from perspectives of structure and optimization. In the structure design, FA object representation is proposed to enhance the awareness of the weak features in small objects. The FA object representation framework is made up of a dual-branch decoder and collaborative probability (CP) loss. In the dual-branch decoder, the FA branch is designed to activate the small object features (activation), as well as suppress the largescale background, and the semantic refinement (SR) branch is designed to further distinguish small objects (refinement). The CP loss is proposed to effectively combine the activation and refinement outputs of the decoder under the CP hypothesis. During the collaboration, the weak features of the small objects are enhanced with the activation output, and the refined output can be viewed as the refinement of the binary outputs. In the optimization stage, small object mining (SOM) based network optimization is applied to automatically select effective samples, to refine the direction of the optimization, while addressing the imbalanced sample problem between the small objects and the large-scale background. The experimental results obtained with two benchmark HRS imagery segmentation datasets demonstrate that the proposed framework outperforms the state-of-the-art semantic segmentation methods, and achieves a good tradeoff between accuracy and efficiency.

Benchmarks

BenchmarkMethodologyMetrics
semantic-segmentation-on-isaidFactSeg@ResNet-50
mIoU: 64.79

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery | Papers | HyperAI