HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Frustum-PointPillars: A Multi-Stage Approach for 3D Object Detection using RGB Camera and LiDAR

{Christian Laugier Özgür Erkent David Sierra-Gonzalez Anshul Paigwar}

Frustum-PointPillars: A Multi-Stage Approach for 3D Object Detection using RGB Camera and LiDAR

Abstract

Accurate 3D object detection is a key part of the perception module for autonomous vehicles. A better understanding of the objects in 3D facilitates better decision-making and path planning. RGB Cameras and LiDAR are the most commonly used sensors in autonomous vehicles for environment perception. Many approaches have shown promising results for 2D detection with RGB Images, but efficiently localizing small objects like pedestrians in the 3D point cloud of large scenes has remained a challenging area of research. We propose a novel method, Frustum-PointPillars, for 3D object detection using LiDAR data. Instead of solely relying on point cloud features, we leverage the mature field of 2D object detection to reduce the search space in the 3D space. Then, we use the Pillar Feature Encoding network for object localization in the reduced point cloud. We also propose a novel approach for masking point clouds to further improve the localization of objects. We train our network on the KITTI dataset and perform experiments to show the effectiveness of our network. On the KITTI test set our method outperforms other multi-sensor SOTA approaches for 3D pedestrian localization (Bird’s Eye View) while achieving a significantly faster runtime of 14 Hz.

Benchmarks

BenchmarkMethodologyMetrics
3d-object-detection-on-kitti-pedestriansFrustrum-PointPillars
AP: 42.89 %
3d-object-detection-on-kitti-pedestrians-easyFrustrum-PointPillars
AP: 51.22 %
3d-object-detection-on-kitti-pedestrians-hardFrustrum-PointPillars
AP: 39.28 %
birds-eye-view-object-detection-on-kitti-1Frustrum-PointPillars
AP: 52.23 %
birds-eye-view-object-detection-on-kitti-16Frustrum-PointPillars
AP: 60.98 %
birds-eye-view-object-detection-on-kitti-17Frustrum-PointPillars
AP: 48.30 %
object-localization-on-kitti-pedestrian-easyFrustrum-PointPillars
AP: 60.98 %
object-localization-on-kitti-pedestriansFrustrum-PointPillars
AP: 52.23 %
object-localization-on-kitti-pedestrians-hardFrustrum-PointPillars
AP: 48.30 %

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Frustum-PointPillars: A Multi-Stage Approach for 3D Object Detection using RGB Camera and LiDAR | Papers | HyperAI