HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Image Restoration via Frequency Selection

{Alois Knoll Xiaochun Cao Wenqi Ren Yuning Cui}

Abstract

Image restoration aims to reconstruct the latent sharp image from its corrupted counterpart. Besides dealing with this long-standing task in the spatial domain, a few approaches seek solutions in the frequency domain by considering the large discrepancy between spectra of sharp/degraded image pairs. However, these algorithms commonly utilize transformation tools, e.g. , wavelet transform, to split features into several frequency parts, which is not flexible enough to select the most informative frequency component to recover. In this paper, we exploit a multi-branch and content-aware module to decompose features into separate frequency subbands dynamically and locally, and then accentuate the useful ones via channel-wise attention weights. In addition, to handle large-scale degradation blurs, we propose an extremely simple decoupling and modulation module to enlarge the receptive field via global and window-based average pooling. Furthermore, we merge the paradigm of multi-stage networks into a single U-shaped network to pursue multi-scale receptive fields and improve efficiency. Finally, integrating the above designs into a convolutional backbone, the proposed Frequency Selection Network (FSNet) performs favorably against state-of-the-art algorithms on 20 different benchmark datasets for 6 representative image restoration tasks, including single-image defocus deblurring, image dehazing, image motion deblurring, image desnowing, image deraining, and image denoising.

Benchmarks

BenchmarkMethodologyMetrics
deblurring-on-rsblurFSNet
Average PSNR: 34.31
image-deblurring-on-goproFSNet
PSNR: 33.29
SSIM: 0.963
image-dehazing-on-haze4kFSNet
PSNR: 34.12
SSIM: 0.99
image-dehazing-on-sots-indoorFSNet
PSNR: 42.45
SSIM: 0.997
image-dehazing-on-sots-outdoorFSNet
PSNR: 40.40
SSIM: 0.997

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Image Restoration via Frequency Selection | Papers | HyperAI