HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Improving Question Classification by Feature Extraction and Selection

{Le Anh-Cuong Nguyen Van-Tu}

Abstract

Question classification is the task of predicting the entity type of the answering sentence for a given question in natural language. It plays an important role in finding or constructing accurate answers and therefore helps to improve quality of automated question answering systems. Different lexical, syntactical and semantic features was extracted automatically from a question to serve the classification in previous studies. However, combining all those features doesn’t always give the best results for all types of questions. Different from previous studies, this paper focuses on the problem of how to extract and select efficient features adapting to each different types of question. We first propose a method of using a feature selection algorithm to determine appropriate features corresponding to different question types. Secondly, we design a new type of features, which is based on question patterns. We tested our proposed approach on the benchmark dataset TREC and using Support Vector Machines (SVM) for the classification algorithm. The experiment shows obtained results with the accuracies of 95.2% and 91.6% for coarse grain and fine grain data sets respectively, which are much better in comparison with the previous studies.

Benchmarks

BenchmarkMethodologyMetrics
text-classification-on-trec-50SVM
Error: 8.4

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Improving Question Classification by Feature Extraction and Selection | Papers | HyperAI