Command Palette
Search for a command to run...
Incorporating Word Attention into Character-Based Word Segmentation
Incorporating Word Attention into Character-Based Word Segmentation
Shohei Higashiyama Masao Utiyama Yoshiaki Oida Yohei Sakamoto Masao Ideuchi Eiichiro Sumita Isaac Okada
Abstract
Neural network models have been actively applied to word segmentation, especially Chinese, because of the ability to minimize the effort in feature engineering. Typical segmentation models are categorized as character-based, for conducting exact inference, or word-based, for utilizing word-level information. We propose a character-based model utilizing word information to leverage the advantages of both types of models. Our model learns the importance of multiple candidate words for a character on the basis of an attention mechanism, and makes use of it for segmentation decisions. The experimental results show that our model achieves better performance than the state-of-the-art models on both Japanese and Chinese benchmark datasets.