HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks

{Bao-liang Lu Wei-Long Zheng}

Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks

Abstract

To investigate critical frequency bands and channels, this paper introduces deep belief networks (DBNs) to constructing EEG-based emotion recognition models for three emotions: positive, neutral and negative. We develop an EEG dataset acquired from 15 subjects. Each subject performs the experiments twice at the interval of a few days. DBNs are trained with differential entropy features extracted from multichannel EEG data. We examine the weights of the trained DBNs and investigate the critical frequency bands and channels. Four different profiles of 4, 6, 9, and 12 channels are selected. The recognition accuracies of these four profiles are relatively stable with the best accuracy of 86.65%, which is even better than that of the original 62 channels. The critical frequency bands and channels determined by using the weights of trained DBNs are consistent with the existing observations. In addition, our experiment results show that neural signatures associated with different emotions do exist and they share commonality across sessions and individuals. We compare the performance of deep models with shallow models. The average accuracies of DBN, SVM, LR, and KNN are 86.08%, 83.99%, 82.70%, and 72.60%, respectively.

Benchmarks

BenchmarkMethodologyMetrics
eeg-on-seedDBN
Accuracy: 86.08
eeg-on-seed-ivDBN
Accuracy: 66.77

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks | Papers | HyperAI