HyperAIHyperAI

Command Palette

Search for a command to run...

Maximization and restoration: Action segmentation through dilation passing and temporal reconstruction

Sungho Jo Sejoon Huh Daekyum Kim Junyong Park

Abstract

Action segmentation aims to split videos into segments of different actions. Recent work focuses on dealing with long-range dependencies of long, untrimmed videos, but still suffers from over-segmentation and performance saturation due to increased model complexity. This paper addresses the aforementioned issues through a divide-and-conquer strategy that first maximizes the frame-wise classification accuracy of the model and then reduces the over-segmentation errors. This strategy is implemented with the Dilation Passing and Reconstruction Network, composed of the Dilation Passing Network, which primarily aims to increase accuracy by propagating information of different dilations, and the Temporal Reconstruction Network, which reduces over-segmentation errors by temporally encoding and decoding the output features from the Dilation Passing Network. We also propose a weighted temporal mean squared error loss that further reduces over-segmentation. Through evaluations on the 50Salads, GTEA, and Breakfast datasets, we show that our model achieves significant results compared to existing state-of-the-art models.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Maximization and restoration: Action segmentation through dilation passing and temporal reconstruction | Papers | HyperAI