HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Parallel Training of Knowledge Graph Embedding Models: A Comparison of Techniques

{Rainer Gemulla Adrian Kochsiek}

Abstract

Knowledge graph embedding (KGE) models represent the entities and relations of a knowledge graph (KG) using dense continuous representations called embeddings. KGE methods have recently gained traction for tasks such as knowledge graph completion and reasoning as well as to provide suitable entity representations for downstream learning tasks. While a large part of the available literature focuses on small KGs, a number of frameworks that are able to train KGE models for large-scale KGs by parallelization across multiple GPUs or machines have recently been proposed. So far, the benefits and drawbacks of the various parallelization techniques have not been studied comprehensively. In this paper, we report on an experimental study in which we presented, re-implemented in a common computational framework, investigated, and improved the available techniques. We found that the evaluation methodologies used in prior work are often not comparable and can be misleading, and that most of currently implemented training methods tend to have a negative impact on embedding quality. We propose a simple but effective variation of the stratification technique used by PyTorch BigGraph for mitigation. Moreover, basic random partitioning can be an effective or even the best-performing choice when combined with suitable sampling techniques. Ultimately, we found that efficient and effective parallel training of large-scale KGE models is indeed achievable but requires a careful choice of techniques.

Benchmarks

BenchmarkMethodologyMetrics
link-prediction-on-wikidata5mComplEx
Hits@1: 0.255
Hits@10: 0.398
MRR: 0.308

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Parallel Training of Knowledge Graph Embedding Models: A Comparison of Techniques | Papers | HyperAI