Command Palette
Search for a command to run...
{Steven Kapturowski Will Dabney Remi Munos John Quan Georg Ostrovski}

Abstract
Building on the recent successes of distributed training of RL agents, in this paper we investigate the training of RNN-based RL agents from distributed prioritized experience replay. We study the effects of parameter lag resulting in representational drift and recurrent state staleness and empirically derive an improved training strategy. Using a single network architecture and fixed set of hyperparameters, the resulting agent, Recurrent Replay Distributed DQN, quadruples the previous state of the art on Atari-57, and surpasses the state of the art on DMLab-30. It is the first agent to exceed human-level performance in 52 of the57 Atari games.
Benchmarks
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.