HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Response Ranking with Multi-types of Deep Interactive Representations in Retrieval-based Dialogues

{Dongyan Zhao Rui Yan Wei Wu Jiazhan Feng Chongyang Tao Ruijian Xu}

Abstract

Building an intelligent dialogue system with the ability to select a proper response according to a multi-turn context is challenging in three aspects: (1) the meaning of a context–response pair is built upon language units from multiple granularities (e.g., words, phrases, and sub-sentences, etc.); (2) local (e.g., a small window around a word) and long-range (e.g., words across the context and the response) dependencies may exist in dialogue data; and (3) the relationship between the context and the response candidate lies in multiple relevant semantic clues or relatively implicit semantic clues in some real cases. However, existing approaches usually encode the dialogue with mono-type representation and the interaction processes between the context and the response candidate are executed in a rather shallow manner, which may lead to an inadequate understanding of dialogue content and hinder the recognition of the semantic relevance between the context and response. To tackle these challenges, we propose a representation[K]-interaction[L]-matching framework that explores multiple types of deep interactive representations to build context-response matching models for response selection. Particularly, we construct different types of representations for utterance–response pairs and deepen them via alternate encoding and interaction. By this means, the model can handle the relation of neighboring elements, phrasal pattern, and long-range dependencies during the representation and make a more accurate prediction through multiple layers of interactions between the context–response pair. Experiment results on three public benchmarks indicate that the proposed model significantly outperforms previous conventional context-response matching models and achieve slightly better results than the BERT model for multi-turn response selection in retrieval-based dialogue systems.

Benchmarks

BenchmarkMethodologyMetrics
conversational-response-selection-on-ubuntu-1WDMN
R10@1: 0.821
R10@2: 0.911
R10@5: 0.981
R2@1: 0.957

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Response Ranking with Multi-types of Deep Interactive Representations in Retrieval-based Dialogues | Papers | HyperAI