HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Universal Fine-grained Visual Categorization by Concept Guided Learning

{Gui-Song Xia Wei Ji Beichen Zhou Qi Bi}

Abstract

Existing fine-grained visual categorization (FGVC) methods assume that the fine-grained semantics rest in the informative parts of an image. This assumption works well on favorable front-view object-centric images, but can face great challenges in many real-world scenarios, such as scene-centric images ( e.g. , street view) and adverse viewpoint ( e.g. , object reidentification, remote sensing). In such scenarios, the mis-/over-feature activation is likely to confuse the part selection and degrade the fine-grained representation. In this paper, we are motivated to design a universal FGVC framework for real-world scenarios. More precisely, we propose a concept guided learning (CGL), which models concepts of a certain fine-grained category as a combination of inherited concepts from its subordinate coarse-grained category and discriminative concepts from its own. The discriminative concepts is utilized to guide the fine-grained representation learning. Specifically, three key steps are designed, namely, concept mining, concept fusion, and concept constraint. On the other hand, to bridge the FGVC dataset gap under scene-centric and adverse viewpoint scenarios, a Fine-grained Land-cover Categorization Dataset (FGLCD) with 59,994 fine-grained samples is proposed. Extensive experiments show the proposed CGL: 1) has a competitive performance on conventional FGVC; 2) achieves state-of-the-art performance on fine-grained aerial scenes & scene-centric street scenes; 3) good generalization on object re-identification and fine-grained aerial object detection. The dataset and source code will be available at https://github.com/BiQiWHU/CGL.

Benchmarks

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Universal Fine-grained Visual Categorization by Concept Guided Learning | Papers | HyperAI