Node Classification On Cornell 60 20 20

评估指标

1:1 Accuracy

评测结果

各个模型在此基准测试上的表现结果

Paper TitleRepository
ACMII-GCN95.9 ± 1.83Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-295.25 ± 1.55Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-295.08 ± 3.11Revisiting Heterophily For Graph Neural Networks
ACM-GCN+94.92 ± 2.79Revisiting Heterophily For Graph Neural Networks
ACM-GCN94.75 ± 3.8Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-394.26 ± 2.57Revisiting Heterophily For Graph Neural Networks
ACM-GCN++93.93 ± 1.05Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+93.93 ± 3.03Revisiting Heterophily For Graph Neural Networks
ACM-SGC-293.77 ± 2.17Revisiting Heterophily For Graph Neural Networks
ACM-SGC-193.77 ± 1.91Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-393.61 ± 2.79Revisiting Heterophily For Graph Neural Networks
ACM-GCNII*93.44 ± 2.74Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++92.62 ± 2.57Revisiting Heterophily For Graph Neural Networks
ACM-GCNII92.62 ± 3.13Revisiting Heterophily For Graph Neural Networks
BernNet92.13 ± 1.64BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation
APPNP91.80 ± 0.63Predict then Propagate: Graph Neural Networks meet Personalized PageRank
GPRGNN91.36 ± 0.70Adaptive Universal Generalized PageRank Graph Neural Network
MLP-291.30 ± 0.70Revisiting Heterophily For Graph Neural Networks
GCNII*90.49 ± 4.45Simple and Deep Graph Convolutional Networks
GCNII89.18 ± 3.96Simple and Deep Graph Convolutional Networks
0 of 36 row(s) selected.
Node Classification On Cornell 60 20 20 | SOTA | HyperAI超神经