HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
节点分类
Node Classification On Squirrel 60 20 20
Node Classification On Squirrel 60 20 20
评估指标
1:1 Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
1:1 Accuracy
Paper Title
Repository
GNNDLD
77.72±0.84
GNNDLD: Graph Neural Network with Directional Label Distribution
-
ACMII-GCN++
69.98 ± 1.53
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+
69.81 ± 1.11
Revisiting Heterophily For Graph Neural Networks
ACM-GCN+
69.26 ± 1.11
Revisiting Heterophily For Graph Neural Networks
ACM-GCN++
68.56 ± 1.33
Revisiting Heterophily For Graph Neural Networks
NFGNN
58.9±0.35
Node-oriented Spectral Filtering for Graph Neural Networks
ACM-Snowball-2
55.97 ± 2.03
Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-3
55.73 ± 2.39
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN
54.53 ± 2.09
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-2
53.48 ± 0.6
Revisiting Heterophily For Graph Neural Networks
GCN+JK
53.40 ± 1.90
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-3
52.31 ± 1.57
Revisiting Heterophily For Graph Neural Networks
GAT+JK
52.28 ± 3.61
Revisiting Heterophily For Graph Neural Networks
BernNet
51.35 ± 0.73
BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation
GPRGNN
49.93 ± 0.53
Adaptive Universal Generalized PageRank Graph Neural Network
Snowball-3
48.25 ± 0.94
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
Snowball-2
47.88 ± 1.23
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
SGC-1
47.62 ± 1.27
Simplifying Graph Convolutional Networks
HH-GCN
47.19 ± 1.21
Half-Hop: A graph upsampling approach for slowing down message passing
ACM-SGC-1
46.4 ± 1.13
Revisiting Heterophily For Graph Neural Networks
0 of 37 row(s) selected.
Previous
Next
Node Classification On Squirrel 60 20 20 | SOTA | HyperAI超神经