Node Classification On Chameleon 60 20 20

评估指标

1:1 Accuracy

评测结果

各个模型在此基准测试上的表现结果

Paper TitleRepository
GNNDLD79.78±1.66GNNDLD: Graph Neural Network with Directional Label Distribution-
EG2LNetI78.9--
ACM-GCN+76.08 ± 2.13Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++75.93 ± 1.71Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+75.51 ± 1.58Revisiting Heterophily For Graph Neural Networks
ACM-GCN++75.23 ± 1.72Revisiting Heterophily For Graph Neural Networks
NFGNN72.52±0.59Node-oriented Spectral Filtering for Graph Neural Networks
ACM-Snowball-268.51 ± 1.7Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-368.4 ± 2.05Revisiting Heterophily For Graph Neural Networks
ACMII-GCN68.38 ± 1.36Revisiting Heterophily For Graph Neural Networks
BernNet68.29 ± 1.58BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation
 GAT+JK68.14 ± 1.18Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-267.83 ± 2.63Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-367.53 ± 2.83Revisiting Heterophily For Graph Neural Networks
GPRGNN67.48 ± 0.40Adaptive Universal Generalized PageRank Graph Neural Network
Snowball-365.49 ± 1.64Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
Snowball-264.99 ± 2.39Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
SGC-164.86 ± 1.81Simplifying Graph Convolutional Networks
GCN+JK64.68 ± 2.85Revisiting Heterophily For Graph Neural Networks
GCN64.18 ± 2.62Semi-Supervised Classification with Graph Convolutional Networks
0 of 38 row(s) selected.
Node Classification On Chameleon 60 20 20 | SOTA | HyperAI超神经