HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
节点分类
Node Classification On Citeseer 60 20 20
Node Classification On Citeseer 60 20 20
评估指标
1:1 Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
1:1 Accuracy
Paper Title
Repository
GNNDLD
86.3±1.24
GNNDLD: Graph Neural Network with Directional Label Distribution
-
FAGCN
82.37 ± 1.46
Beyond Low-frequency Information in Graph Convolutional Networks
ACM-GCNII
82.28 ± 1.12
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-2
82.07 ± 1.04
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+
81.87 ± 1.38
Revisiting Heterophily For Graph Neural Networks
ACM-GCN++
81.83 ± 1.65
Revisiting Heterophily For Graph Neural Networks
GCNII*
81.83 ± 1.78
Simple and Deep Graph Convolutional Networks
ACMII-GCN
81.79 ± 0.95
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++
81.76 ± 1.25
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII*
81.69 ± 1.25
Revisiting Heterophily For Graph Neural Networks
ACM-GCN+
81.65 ± 1.48
Revisiting Heterophily For Graph Neural Networks
GCNII
81.58 ± 1.3
Simple and Deep Graph Convolutional Networks
ACM-Snowball-2
81.58 ± 1.23
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-3
81.56 ± 1.15
Revisiting Heterophily For Graph Neural Networks
Snowball-2
81.53 ± 1.71
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
GCN
81.39 ± 1.23
Semi-Supervised Classification with Graph Convolutional Networks
ACM-Snowball-3
81.32 ± 0.97
Revisiting Heterophily For Graph Neural Networks
ACM-SGC-1
80.96 ± 0.93
Revisiting Heterophily For Graph Neural Networks
ACM-SGC-2
80.93 ± 1.16
Revisiting Heterophily For Graph Neural Networks
Snowball-3
80.93 ± 1.32
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
0 of 33 row(s) selected.
Previous
Next
Node Classification On Citeseer 60 20 20 | SOTA | HyperAI超神经