HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
节点分类
Node Classification On Texas 60 20 20 Random
Node Classification On Texas 60 20 20 Random
评估指标
1:1 Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
1:1 Accuracy
Paper Title
Repository
ACM-GCN++
96.56 ± 2
Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-2
95.74 ± 2.22
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+
95.41 ± 2.82
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-2
95.25 ± 1.55
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN
95.08 ± 2.07
Revisiting Heterophily For Graph Neural Networks
ACM-GCN+
94.92 ± 2.79
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-3
94.75 ± 3.09
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++
94.75 ± 2.91
Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-3
94.75 ± 2.41
Revisiting Heterophily For Graph Neural Networks
NFGNN
94.03±0.82
Node-oriented Spectral Filtering for Graph Neural Networks
ACM-SGC-1
93.61 ± 1.55
Revisiting Heterophily For Graph Neural Networks
ACM-SGC-2
93.44 ± 2.54
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII*
93.28 ± 2.79
Revisiting Heterophily For Graph Neural Networks
BernNet
93.12 ± 0.65
BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation
GPRGNN
92.92 ± 0.61
Adaptive Universal Generalized PageRank Graph Neural Network
ACM-GCNII
92.46 ± 1.97
Revisiting Heterophily For Graph Neural Networks
MLP-2
92.26 ± 0.71
Revisiting Heterophily For Graph Neural Networks
APPNP
91.18 ± 0.70
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
FAGCN
88.85 ± 4.39
Beyond Low-frequency Information in Graph Convolutional Networks
GCNII*
88.52 ± 3.02
Simple and Deep Graph Convolutional Networks
0 of 36 row(s) selected.
Previous
Next
Node Classification On Texas 60 20 20 Random | SOTA | HyperAI超神经