HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
节点分类
Node Classification On Wisconsin 60 20 20
Node Classification On Wisconsin 60 20 20
评估指标
1:1 Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
1:1 Accuracy
Paper Title
Repository
ACM-GCN++
97.5 ± 1.25
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++
97.13 ± 1.68
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-3
97.00 ± 2.63
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+
96.75 ± 1.79
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-2
96.63 ± 2.24
Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-3
96.62 ± 1.86
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN
96.62 ± 2.44
Revisiting Heterophily For Graph Neural Networks
ACM-GCN+
96.5 ± 2.08
Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-2
96.38 ± 2.59
Revisiting Heterophily For Graph Neural Networks
ACM-GCN
95.75 ± 2.03
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII
94.63 ± 2.96
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII*
94.37 ± 2.81
Revisiting Heterophily For Graph Neural Networks
ACM-SGC-2
94.00 ± 2.61
Revisiting Heterophily For Graph Neural Networks
MLP-2
93.87 ± 3.33
Revisiting Heterophily For Graph Neural Networks
GPRGNN
93.75 ± 2.37
Adaptive Universal Generalized PageRank Graph Neural Network
ACM-SGC-1
93.25 ± 2.92
Revisiting Heterophily For Graph Neural Networks
APPNP
92.00 ± 3.59
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
FAGCN
89.75 ± 6.37
Beyond Low-frequency Information in Graph Convolutional Networks
GCNII*
89.12 ± 3.06
Simple and Deep Graph Convolutional Networks
H2GCN
87.5 ± 1.77
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
0 of 35 row(s) selected.
Previous
Next
Node Classification On Wisconsin 60 20 20 | SOTA | HyperAI超神经