HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
节点分类
Node Classification On Cora 60 20 20 Random
Node Classification On Cora 60 20 20 Random
评估指标
1:1 Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
1:1 Accuracy
Paper Title
Repository
GNNDLD
92.99 ±0.9
GNNDLD: Graph Neural Network with Directional Label Distribution
-
ACM-GCN+
89.75 ± 1.16
Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-3
89.59 ± 1.58
Revisiting Heterophily For Graph Neural Networks
GAT+JK
89.52 ± 0.43
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++
89.47 ± 1.08
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-3
89.36 ± 1.26
Revisiting Heterophily For Graph Neural Networks
ACM-GCN++
89.33 ± 0.81
Revisiting Heterophily For Graph Neural Networks
Snowball-3
89.33 ± 1.3
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
ACMII-GCN+
89.18 ± 1.11
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII
89.1 ± 1.61
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII*
89.00 ± 1.35
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN
89.00 ± 0.72
Revisiting Heterophily For Graph Neural Networks
GCNII
88.98 ± 1.33
Simple and Deep Graph Convolutional Networks
ACMII-Snowball-2
88.95 ± 1.04
Revisiting Heterophily For Graph Neural Networks
GCNII*
88.93 ± 1.37
Simple and Deep Graph Convolutional Networks
FAGCN
88.85 ± 1.36
Beyond Low-frequency Information in Graph Convolutional Networks
ACM-Snowball-2
88.83 ± 1.49
Revisiting Heterophily For Graph Neural Networks
Snowball-2
88.64 ± 1.15
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
BernNet
88.52 ± 0.95
BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation
GCN
87.78 ± 0.96
Semi-Supervised Classification with Graph Convolutional Networks
0 of 33 row(s) selected.
Previous
Next
Node Classification On Cora 60 20 20 Random | SOTA | HyperAI超神经